Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (НЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 126
ki = ji (f1 , f2 ,..., fr , g1 , g2 ,..., gr ), (7)
i = 1, 2,..., r,
где ji — непрерывная функция всех переменных. Если ещё предположить, что функции j, трижды непрерывно дифференцируемы, то мы придём к понятию группы Ли. Если считать, что координаты единицы все равны нулю, т. е. если принять единицу за начало координат, то, разлагая в ряд Тейлора правую часть соотношения (7), получим
Числа
называются структурными константами группы Ли, и к изучению их полностью сводится изучение группы Ли.
Лит.: Понтрягин Л. С., Непрерывные группы, 3 изд., М., 1973 (имеется библ.).
Л. С. Понтрягин.
Непрерывная дробь
Непреры'вная дробь, цепная дробь, один из важнейших способов представления чисел и функций. Н. д. есть выражение вида
где a — любое целое число, a1 , a2 ,..., an ,... — натуральные числа, называемые неполными частными, или элементами, данной Н. д. К Н. д., изображающей некоторое число a, можно прийти, записывая это число в виде
где a — целое число и 0 < 1/a1 < 1, затем, записывая в таком же виде a1 и т. д. Число элементов Н. д. может быть конечным или бесконечным; в зависимости от этого Н. д. называют конечной или бесконечной. Н. д. (1) часто символически обозначают так:
[а ; a1 , a2,..., an ,... ] (бесконечная Н. д.) (2)
или
[а ; а1 , a2,..., an ] (конечная Н. д.). (3)
Конечная Н. д. всегда представляет собой рациональное число; обратно, каждое рациональное число может быть представлено в виде конечной Н. д. (3); такое представление единственно, если потребовать, чтобы an ¹ 1. Н. д. [а ; a1 , a2 ,..., ak ] (k £ n ), записанную в виде несократимой дроби pk /qk , называют подходящей дробью порядка k данной Н. д. (2). Числители и знаменатели подходящих дробей связаны рекуррентными формулами:
pk+1 = ak+1pk + pk-1, qk+1 = ak+1qk + qk-1,
которые служат основанием всей теории Н. д. Из этих формул непосредственно вытекает важное соотношение
pk qk-1 — qk pk-1 = ± 1.
Для каждой бесконечной Н. д. существует предел
называемый значением данной Н. д. Каждое иррациональное число является значением единственной бесконечной Н. д., получаемой разложением a указанным выше образом, например
(е — 1)/2 = [0, 1,6, 10,14, 18,...];
квадратичные иррациональности разлагаются в периодические Н. д.
Основное значение Н. д. для приложений заключается в том, что подходящие дроби являются наилучшими приближениями числа a, то есть, что для любой другой дроби m /n, знаменатель которой не более gk имеет место неравенство |n a — m | > |gk a — pk l; при этом |qk . — pk | < 1/qk+1. Нечётные подходящие дроби больше a, а чётные — меньше. При возрастании k нечётные подходящие дроби убывают, а чётные возрастают.
Н. д. используются для приближения иррациональных чисел рациональными. Например, известные приближения 22 /7 , 355 /113 для числа p (отношения длины окружности к диаметру) суть подходящие дроби для разложения p в Н. д. Следует отметить, что первое доказательство иррациональности чисел е и p было дано в 1766 немецким математиком И. Ламбертом с помощью Н. д. Французский математик Ж. Лиувилль доказал: для любого алгебраического числа a степени n можно найти такую постоянную l, что для любой дроби x /y выполняется неравенство |a — x /y | > l/уn . С помощью Н. д. можно построить числа a такие, что разность |a — pk /qk | делается меньше a/gk , какую бы постоянную l мы ни взяли. Так, используя Н. д., можно строить трансцендентные числа. Недостатком Н. д. является чрезвычайная трудность арифметических действий над ними, равносильная практической невозможности этих действий; например, зная элементы двух дробей, мы не можем сколько-нибудь просто получить элементы их суммы или произведения.
Н. д. встречаются уже в 16 в. у Р. Бомбелли . В 17 в. Н. д. изучал Дж. Валлис ; ряд важных свойств Н. д. открыл Х. Гюйгенс , занимавшийся ими в связи с теорией зубчатых колёс. Многое сделал для теории Н. д. Л. Эйлер в 18 в.
В 19 в. П. Л. Чебышев , А. А. Марков и др. применили Н. д., элементами которых являются многочлены, к изучению ортогональных многочленов .
Лит.: Чебышев П. Л., Полное собрание сочинений, 2 изд., т. 1, М. — Л., 1946; Хинчин А. Я., Цепные дроби, 2 изд., М. — Л., 1949; Эйлер Л., Введение в анализ бесконечно малых, пер. с лат., т. 1, М. — Л., 1936; Стилтьес Т. И., Исследования о непрерывных дробях, пер. с франц., Хар. — К., 1936; Perron О., Die Lehre von den Kettenbrüchen, 2 Aufl., Lpz. — B., 1929; Wall Н. S., Analytic theory of continued fractions, Toronto — N. Y. — L., 1948.
Непрерывная разливка стали
Непреры'вная разли'вка ста'ли, процесс получения из жидкой стали слитков-заготовок (для прокатки, ковки или прессования), формируемых непрерывно по мере поступления жидкого металла с одной стороны изложницы-кристаллизатора и удаления частично затвердевшей заготовки с противоположной стороны.
Н. р. с. имеет следующие преимущества перед обычной разливкой: на 10—15% сокращается расход металла на 1 т годного проката вследствие уменьшения обрези головной и донной частей заготовки; сокращаются капитальные затраты на сооружение металлургического завода, так как исключаются парк чугунных изложниц, отделения для их подготовки и извлечения слитков из изложниц, дорогостоящие блюминги или слябинги , на которых крупные слитки обжимаются в заготовку для последующей прокатки; создаются условия для полной механизации и автоматизации процесса разливки; благодаря ускорению затвердевания повышается степень однородности металла, улучшается его качество.
Способ получения продукции непосредственно из жидкого металла (так называемая бесслитковая прокатка ) был предложен в 1855 Г. Бессемером . Экспериментальные работы, проведённые в этой области в ряде стран, не дали положительных результатов. Более перспективным оказался способ получения из жидкого металла не готового изделия, а промежуточной заготовки с размерами, как правило, меньшими, чем при отливке в изложницу. В 30-х гг. 20 в. начало развиваться непрерывное литьё через водоохлаждаемую изложницу-кристаллизатор заготовок из цветных металлов и сплавов, главным образом алюминиевых и медных. Стальные заготовки таким методом были впервые получены З. Юнгансом (Германия) в 1939. В СССР работы по освоению Н. р. с. были начаты в 1944, а в 1955 на Горьковском заводе «Красное Сормово» введена в эксплуатацию первая промышленная установка Н. р. с. (УНРС). В 1973 в СССР на 21 заводе имелось 36 УНРС; во всём мире работает свыше 500 УНРС (1973). Кроме СССР, большое распространение этот способ получил в США, Японии, ФРГ и Италии.
- Предыдущая
- 126/192
- Следующая
