Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (НЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 120
В качестве примера Н. м. можно привести найденный А. Н. Колмогоровым способ проверки согласованности теоретических и эмпирических распределений (так называемый критерий Колмогорова). Пусть результаты n независимых наблюдений некоторой величины имеют функцию распределения F (x ) и пусть Fn (x ) обозначает эмпирическую функцию распределения (см. Вариационный ряд ), построенную по этим n наблюдениям, a Dn — наибольшее по абсолютной величине значение разности Fn (x ) — F (x ). Случайная величина
имеет в случае непрерывности F (x ) функцию распределения Kn (l), не зависящую от F (x ) и стремящуюся при безграничном возрастании n к пределу
Отсюда при достаточно больших n, для вероятности pn ,l. Неравенства
получается приближённое выражение
pn,l » 1 - К (l). (*)
Функция К (l) табулирована. Её значения для некоторых А приведены в табл.
Таблица функции К (l)
l 0,57 0,71 0,83 1,02 1,36 1,63 К (l) 0,10 0,30 0,50 0,75 0,95 0,99Равенство (*) следующим образом используется для проверки гипотезы о том, что наблюдаемая случайная величина имеет функцию распределения F (x ): сначала по результатам наблюдений находят значение величины Dn , а затем по формуле (*) вычисляют вероятность получения отклонения Fn от F, большего или равного наблюдённому. Если указанная вероятность достаточно мала, то в соответствии с общими принципами проверки статистических гипотез (см. Статистическая проверка гипотез ) проверяемую гипотезу отвергают. В противном случае считают, что результаты опыта не противоречат проверяемой гипотезе. Аналогично проверяется гипотеза о том, получены ли две независимые выборки, объёма n1 и n2 соответственно, из одной и той же генеральной совокупности с непрерывным законом распределения. При этом вместо формулы (*) пользуются тем, что вероятность неравенства
как это было установлено Н. В. Смирновым , имеет пределом К (l), здесь Dn1 , n2 есть наибольшее по абсолютной величине значение разности Fn1 (х ) — Fn2 (х ).
Другим примером Н. м. могут служить методы проверки гипотезы о том, что теоретическое распределение принадлежит к семейству нормальных распределений. Отметим здесь лишь один из этих методов — так называемый метод выпрямленной диаграммы. Этот метод основывается на следующем замечании. Если случайная величина Х имеет нормальное распределение с параметрами a и s, то
где Ф-1 — функция, обратная нормальной:
Т. о., график функции у = Ф-1 [F (x )] будет в этом случае прямой линией, а график функции у = Ф-1 [Fn (x)] — ломаной линией, близкой к этой прямой (см. рис. ). Степень близости и служит критерием для проверки гипотезы нормальности распределения F (x ).
Лит.: Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики для технических приложений, 3 изд., М., 1969; Большее Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1968.
Ю. В. Прохоров.
Рис. к ст. Непараметрические методы.
Непарнокопытные
Непарнокопы'тные, непарнопалые (Perissodactyla), отряд млекопитающих. Крупные, реже средней величины животные. Число пальцев на передних конечностях 1, 3 или 4, на задних — 1 или 3. Третий палец развит сильнее других и несёт основную тяжесть тела животного. Конечные фаланги пальцев у Н. одеты копытами. Коренные зубы с поперечными и продольными гребнями (складками) на жевательной поверхности, приспособлены к перетиранию жёсткой растительной пищи. Лицевой отдел черепа длинный. Ключицы отсутствуют. В отличие от парнокопытных , на бедренной кости имеется третий вертел. Растительноядны. Желудок простой, однокамерный. Слепая и ободочная кишки длинные, объёмистые, имеют большое число выпячиваний — карманов, что облегчает переваривание грубой пищи. Матка двурогая, плацента диффузная. 1 пара молочных желёз, расположенных в паховой области. Приносят по 1 детёнышу. Распространены Н. в Африке, Азии и Южной Америке, а в домашнем состоянии — на всех материках; в Южной Европе в диком состоянии Н. обитали до конца 19 в. В современной фауне Н. представлены 3 семействами: лошадиные , носороги и тапиры .
Лит.: Соколов И. И., Копытные звери, М. — Л., 1959 (Фауна СССР. Млекопитающие, т. 1, в. 3); Млекопитающие Советского Союза, т. 1, М., 1961.
И. И. Соколов.
Непарнопалые
Непарнопа'лые, отряд млекопитающих; то же, что непарнокопытные .
Непарный шелкопряд
Непа'рный шелкопря'д [Ocneria (Porthetria или Lymantria) dispar], бабочка семейства волнянок; опасный вредитель многих древесных пород. Самец и самка сильно различаются по размерам, окраске, строению усиков (отсюда название). У самок крылья в размахе до 9 см, грязно-белые или желтовато-белые, у самцов — до 5 см, передние буровато-серые, задние бурые. Н. ш. распространён почти по всей Европе, в Северной Африке, умеренных широтах Азии и в Северной Америке; в СССР — в Европейских и южных районах Азиатской части. В году даёт одно поколение. В Северную Америку Н. ш. был завезён во второй половине 19 в. и вскоре стал давать вспышки массового размножения.
Лет бабочек Н. ш. начинается обычно в июле — августе (в южных районах — в июне). Бабочки не питаются и сразу приступают к спариванию и откладыванию яиц (чаще всего на прикорневые части стволов деревьев, реже на ветки или на обнажённые корни деревьев, а также на камни и т.п.). Через 20—25 сут в яйцах почти заканчивается формирование гусениц, которые остаются в оболочке яйца на зимовку. Выходят гусеницы весной следующего года.
Гусеницы Н. ш. повреждают свыше 300 видов растений; предпочитают дуб, граб, плодовые, тополь, берёзу, липу, иву. При массовом размножении гусеницы почти полностью объедают листья деревьев, нередко вынужденно переходят на травянистые растения — повреждают хлебные злаки и даже овощные культуры. Деревья ослабляются, теряют прирост и плодоношение. При повторном повреждении наблюдаются их суховершинность и полное усыхание.
Меры борьбы: соскабливание и сжигание, а также пропитывание минеральными маслами кладок яиц; накладывание на штамбы деревьев колец из гусеничного клея; обработка растений инсектицидами .
Е. Н. Пономарева.
- Предыдущая
- 120/192
- Следующая
