Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (НЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 105
и, следовательно,
Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 1, М., 1973.
Неопределённый интеграл
Неопределённый интегра'л, общее выражение первообразной для подынтегральной функции f (x ); обозначается
Например,
См. Интегральное исчисление .
Неопределённых коэффициентов метод
Неопределённых коэффицие'нтов ме'тод, метод, применяемый в математике для отыскания коэффициентов выражений, вид которых заранее известен. Так, например, на основании теоретических соображений дробь
может быть представлена в виде суммы
где А, В и С — коэффициенты, подлежащие определению. Чтобы найти их, приравнивают второе выражение первому:
и, освобождаясь от знаменателя и собирая слева члены с одинаковыми степенями х, получают:
(А + В + С ) х2 + (В - С ) х - А = 3x2 - 1.
Так как последнее равенство должно выполняться для всех значений х, то коэффициенты при одинаковых степенях х справа и слева должны быть одинаковыми. Т. о., получаются три уравнения для определения трёх неизвестных коэффициентов: А + В + С = 3, В - С = 0, А = 1, откуда А = В = С = 1. Следовательно,
справедливость этого равенства легко проверить непосредственно. Пусть ещё нужно представить дробь
в виде
где А, В,С и D — неизвестные рациональные коэффициенты. Приравниваем второе выражение первому
или, освобождаясь от знаменателя, вынося, где можно, рациональные множители из-под знака корней и приводя подобные члены в левой части, получаем:
Но такое равенство возможно лишь в случае, когда равны между собой рациональные слагаемые обеих частей и коэффициенты при одинаковых радикалах. Т. о., получаются четыре уравнения для нахождения неизвестных коэффициентов А, В, С и D: А - 2B + 3C = 1, —А + В + 3D = 1, A + C - 2D = —1, В - С + D = 0, откуда A = 0, В = —1 /2 , С = 0, D = 1 /2 , т. е.
В приведённых примерах успех Н. к. м. зависел от правильного выбора выражений, коэффициенты которых отыскивались. Если бы в последнем примере вместо выражения
было взято выражение
то, рассуждая, как и выше, получили бы для трёх коэффициентов А, В и С четыре уравнения А - 2В + 3С = 1, —A - B = 1, A + C = — 1, В - С = 0, которым нельзя удовлетворить никаким выбором чисел А, В и С .
Особенно важны применения Н. к. м. к задачам, в которых число неизвестных коэффициентов бесконечно. К ним относятся задача деления степных рядов, задача нахождения решения дифференциального уравнения в виде степенного ряда и др. Пусть, например, нужно найти решение дифференциального уравнения у" + ху = 0 такое, что у = 0 и y' = 1 при х = 0. Из теории дифференциальных уравнений следует, что такое решение существует и имеет вид степенного ряда
у = х + c2 x2 + c3 x3 + c4 x4 + c5 x5 + ×××.
Подставляя это выражение вместо у в правую часть уравнения, а вместо y " — выражение
2c2 + 3·2с3 х + 4·3с4 х2 + 5·4с5 х3 + ×××,
затем, умножая на х и соединяя члены с одинаковыми степенями х, получают
2c2 + 3·2c3x + (1 + 4·3c4 ) x2 + (c2 + 5·4c5 ) x3 + ××× = 0,
откуда при определении неизвестных коэффициентов получается бесконечная система уравнений: 2c2 = 0; 3·2с3 = 0; 1 + 4·3c4 = 0; c2 + 5·4c5 = 0;...
Решая последовательно эти уравнения,
т. е.
Лит.: Смирнов В. И., Курс высшей математики, т. 1, 23 изд., М., 1974; т. 2, 20 изд., М., 1967; Степанов В. В., Курс дифференциальных уравнений, 8 изд., М., 1959.
Неоптолем
Неоптоле'м (другое имя — Пирр), в древнегреческой мифологии сын Ахилла и царевны Деидамии, один из главных участников Троянской войны . Вместе с др. воинами проник в чреве деревянного коня в Трою, свирепствовал при её захвате (безжалостно убил на глазах у Гекубы престарелого царя Приама , искавшего спасения у алтаря Зевса).
Неорганическая химия
Неоргани'ческая хи'мия, наука о химических элементах и образуемых ими простых и сложных веществах (кроме соединений углерода, составляющих, за немногими исключениями, предмет органической химии ). Н. х. — важнейшая область химии — науки о превращениях вещества, сопровождающихся изменениями его состава, свойств и (или) строения. Н. х. теснейшим образом связана, помимо органической химии, с др. разделами химии — аналитической химией , коллоидной химией , кристаллохимией , физической химией , термодинамикой химической , электрохимией , радиохимией , химической физикой ; на стыке неорганической и органической химии лежит химия металлоорганических соединений и элементоорганических соединений . Н. х. ближайшим образом соприкасается с геолого-минералогическими науками, особенно с геохимией и минералогией , а также с техническими науками — химической технологией (её неорганической частью), металлургией — и агрохимией . В Н. х. постоянно применяются теоретические представления и экспериментальные методы физики.
Историческая справка . История Н. х., особенно до середины 19 в., тесно переплетается с общей историей химических знаний. Важнейшие достижения химии конца 18 — начала 19 вв. (создание кислородной теории горения, химической атомистики, открытие основных стехиометрических законов) явились результатами изучения неорганических веществ.
- Предыдущая
- 105/192
- Следующая
