Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (НА) - Большая Советская Энциклопедия "БСЭ" - Страница 148


148
Изменить размер шрифта:

  Наиболее детализированную спекулятивную теорию Н. предложил А. Вейсман (1892). Основываясь на накопившихся к тому времени данных по оплодотворению , он признавал наличие в половых клетках особого вещества — носителя Н. — зародышевой плазмы. Видимые образования клеточного ядра — хромосомы — Вейсман считал высшими единицами зародышевой плазмы — идантами. Иданты состоят из ид, располагающихся в хромосоме в виде зёрен в линейном порядке. Иды состоят из детерминант, определяющих при развитии особи сорт клеток, и биофор, обусловливающих отдельные свойства клеток. Ида заключает в себе все детерминанты, нужные для построения тела особи данного вида. Зародышевая плазма содержится лишь в половых клетках; соматические, или клетки тела, лишены её. Чтобы объяснить это коренное различие, Вейсман предполагал, что в процессе дробления оплодотворённого яйца основной запас зародышевой плазмы (а значит, и детерминант) попадает в одну из первых клеток дробления, которая становится родоначальной клеткой так называемого зародышевого пути . В остальные клетки зародыша в процессе «неравнонаследственных делений» попадает лишь часть детерминант; наконец, в клетках останутся детерминанты одного сорта, определяющие характер и свойства именно этих клеток. Существенное свойство зародышевой плазмы — её большое постоянство. Теория Вейсмана оказалась ошибочной во многих деталях. Однако его идея о роли хромосом и о линейном расположении в них элементарных единиц Н. оказалась верной и предвосхитила хромосомную теорию Н. (см. ниже). Логический вывод из теории Вейсмана — отрицание наследования приобретённых признаков. Во всех умозрительных теориях Н. можно обнаружить отдельные элементы, нашедшие в дальнейшем подтверждение и более полное развитие в сложившейся в начале 20 в. генетике . Важнейшие из них: а) выделение в организме отдельных признаков или свойств, наследование которых может быть проанализировано соответствующими методами; б) детерминация этих свойств особыми дискретными единицами Н., локализованными в структурах клетки (ядра) (Дарвин называл их геммулами, Де Фриз — пангенами, Вейсман — детерминантами). В современной генетике общепринятым стал предложенный В. Иогансеном (1909) термин ген .

  Особняком стояли попытки установления закономерностей Н. статистическими методами. Один из создателей биометрии — Ф. Гальтон применил разработанные им методы учёта корреляции и регрессии для установления связи между родителями и потомками. Он сформулировал следующие законы Н. (1889): регрессии, или возврата к предкам, и так называемой анцестральной Н., т. е. доли Н. предков в Н. потомков. Законы носят статистический характер, применимы лишь к совокупностям организмов и не раскрывают сущности и причин Н., что могло быть достигнуто только с помощью экспериментального изучения Н. разными методами и, прежде всего гибридологическим анализом , основы которого были заложены ещё Менделем. Так были установлены закономерности наследования качественных признаков: моногибридное — различие между скрещиваемыми формами зависит лишь от одной пары генов, дигибридное — от двух, полигибридное — от многих. При анализе наследования количественных признаков отсутствовала чёткая картина расщепления, что давало повод выделять особую, так называемую слитную Н. и объяснять её смешением наследственных плазм скрещиваемых форм. В дальнейшем гибридологический и биометрический анализ наследования количественных признаков показал, что и слитная Н. сводится к дискретной, но наследование при этом полигенное (см. Полимерия ). В этом случае расщепление трудно обнаружить, так как оно происходит по многим генам, действие которых на признак осложняется сильным влиянием условий внешней среды. Т. о., хотя признаки можно разделять на качественные и количественные, термины «качественная» и «количественная» Н. не оправданы, так как обе категории Н. принципиально одинаковы.

  Развитие цитологии привело к постановке вопроса о материальных основах Н. Впервые мысль о роли ядра как носителя Н. была сформулирована О. Гертвигом (1884) и Э. Страсбургером (1884) на основании изучения процесса оплодотворения. Т. Бовери (1887) установил индивидуальность хромосом и развил гипотезу о их качественном различии. Он же, а также Э. ван Бенеден (1883) установили уменьшение количества хромосом вдвое при образовании половых клеток в мейозе . Американский учёный У. Сеттон (1902) дал цитологическое объяснение закону Менделя о независимом наследовании признаков. Однако подлинное обоснование хромосомной теории Н. было дано в работах Т. Моргана и его школы (начиная с 1911), в которых было показано точное соответствие между генетическими и цитологическими данными. В опытах на дрозофиле было установлено нарушение независимого распределения признаков — их сцепленное наследование. Это явление было объяснено сцеплением генов, т. е. нахождением генов, определяющих эти признаки, в одной определённой паре хромосом. Изучение частоты рекомбинаций между сцепленными генами (в результате кроссинговера ) позволило составить карты расположения генов в хромосомах (см. Генетические карты хромосом ). Количество групп сцепленных генов оказалось равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории Н. были получены при изучении наследования, сцепленного с полом. Ранее цитологи открыли в хромосомных наборах ряда видов животных особые, так называемые половые хромосомы , которыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые половые хромосомы (XX), а самцы — разные (XY), в других — самцы — 2 одинаковые (XX, или ZZ), а самки — разные (XY, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным, с разными — гетерогаметным. Женский пол гомогаметен, а мужской гетерогаметен у некоторых насекомых (в том числе у дрозофилы) и всех млекопитающих. Обратное соотношение — у птиц и бабочек. Ряд признаков у дрозофилы наследуется в строгом соответствии с передачей потомству Х-хромосом. Самка дрозофилы, проявляющая рецессивный признак (см. Рецессивность ), например белую окраску глаз, в силу гомозиготности по этому гену, находящемуся в Х-хромосоме, передаёт белую окраску глаз всем сыновьям, так как они получают свою Х-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передаёт его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки — XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою Х (= Z) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения Х-хромосом концами; тогда самки передают сцепленные Х-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии — от отца к сыну (такое наследование называется голандрическим). Хромосомная теория Н. вскрыла внутриклеточные механизмы Н., дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений Н., т. е. изменчивости.