Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (МН) - Большая Советская Энциклопедия "БСЭ" - Страница 18
А. Л. Попова.
Многоцветница
Многоцве'тница (Nymphalis polychloros), дневная бабочка семейства нимфалид. Крылья в размахе до 6 см, фестончатые, красно-бурые с буровато-чёрным рисунком; вдоль тёмной краевой каймы проходит ряд голубых полулунных пятен. Распространена в Европе и Западной Сибири. Бабочки выводятся во второй половине лета; зимуют оплодотворённые самки. Гусеницы чёрные с продольными жёлтыми полосами; развиваются на некоторых лиственных деревьях, в том числе и плодовых; живут выводками в рыхло сплетённых листьях. М. — второстепенный вредитель плодовых деревьев.
Многочлен
Многочле'н, полином, выражение вида
Axk yl …..wm + Bxn yp …..wq + …… + Dxr ts …..wt ,
где х, у, ..., w — переменные, а А, В, ..., D (коэффициенты М.) и k, l, ..., t (показатели степеней — целые неотрицательные числа) — постоянные. Отдельные слагаемые вида Ахk yl …..wm называются членами М. Порядок членов, а также порядок множителей в каждом члене можно менять произвольно; точно так же можно вводить или опускать члены с нулевыми коэффициентами, а в каждом отдельном члене — степени с нулевыми показателями. В случае, когда М. имеет один, два или три члена, его называют одночленом, двучленом или трёхчленом. Два члена М. называются подобными, если в них показатели степеней при одинаковых переменных попарно равны. Подобные между собой члены
А'хk yl …..wm , B'xk yl …..wm , ….., D'xk yl …..wm
можно заменить одним (приведение подобных членов). Два М. называются равными, если после приведения подобных все члены с отличными от нуля коэффициентами оказываются попарно одинаковыми (но, может быть, записанными в разном порядке), а также если все коэффициенты этих М. оказываются равными нулю. В последнем случае М. называется тождественным нулём и обозначают знаком 0. М. от одного переменного х можно всегда записать в виде
P (x ) = axn + a1xn-1 + ... + an-1x + an ,
где a, a1,..., an — коэффициенты.
Сумму показателей степеней какого-либо члена М. называют степенью этого члена. Если М. не тождественный нуль, то среди членов с отличными от нуля коэффициентами (предполагается, что все подобные члены приведены) имеются один или несколько наибольшей степени; эту наибольшую степень называют степенью М. Тождественный нуль не имеет степени. М. нулевой степени сводится к одному члену А (постоянному, не равному нулю). Примеры: xyz + х + у + z есть многочлен третьей степени, 2x + у — z + 1 есть многочлен первой степени (линейный М.), 5x2 — 2x2 — 3х2 не имеет степени, т. к. это тождественный нуль. М., все члены которого одинаковой степени, называется однородным М., или формой ; формы первой, второй и третьей степеней называются линейными, квадратичными, кубичными, а по числу переменных (два, три) двоичными (бинарными), тройничными (тернарными) (например, x2 + y2 + z2 — ху — yz — xz есть тройничная квадратичная форма).
Относительно коэффициентов М. предполагается, что они принадлежат определённому полю (см. Поле алгебраическое), например полю рациональных, действительных или комплексных чисел. Выполняя над М. действия сложения, вычитания и умножения на основании переместительного, сочетательного и распределительного законов, получают снова М. Таким образом, совокупность всех М. с коэффициентами из данного поля образует кольцо (см. Кольцо алгебраическое) — кольцо многочленов над данным полем; это кольцо не имеет делителей нуля, т. е. произведение М., не равных 0, не может дать 0.
Если для двух многочленов Р (х ) и Q (x ) можно найти такой многочлен R (x ), что Р = QR , то говорят, что Р делится на Q; Q называется делителем, a R — частным. Если Р не делится на Q , то можно найти такие многочлены Р (х ) и S (x ), что Р = QR + S , причём степень S (x ) меньше степени Q (x ).
Посредством повторного применения этой операции можно находить наибольший общий делитель Р и Q , т. е. такой делитель Р и Q , который делится на любой общий делитель этих многочленов (см. Евклида алгоритм ). М., который можно представить в виде произведения М. низших степеней с коэффициентами из данного поля, называется приводимым (в данном поле), в противном случае — неприводимым. Неприводимые М. играют в кольце М. роль, сходную с простыми числами в теории целых чисел. Так, например, верна теорема: если произведение PQ делится на неприводимый многочлен R , a P на R не делится, то тогда Q должно делиться на R . Каждый М. степени, большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени). Например, многочлен x4 + 1, неприводимый в поле рациональных чисел, разлагается на два множителя
в поле действительных чисел и на четыре множителя
в поле комплексных чисел. Вообще каждый М. от одного переменного х разлагается в поле действительных чисел на множители первой и второй степени, в поле комплексных чисел — на множители первой степени (основная теорема алгебры). Для двух и большего числа переменных этого уже нельзя утверждать; например, многочлен x3 + yz2 + z3 неприводим в любом числовом поле.Если переменным х, у, ...,w придать определённые числовые значения (например, действительные или комплексные), то М. также получит определённое числовое значение. Отсюда следует, что каждый М. можно рассматривать как функцию соответствующих переменных. Эта функция непрерывна и дифференцируема при любых значениях переменных; её можно характеризовать как целую рациональную функцию, т. е. функцию, получающуюся из переменных и некоторых постоянных (коэффициентов) посредством выполненных в определённом порядке действий сложения, вычитания и умножения. Целые рациональные функции входят в более широкий класс рациональных функций , где к перечисленным действиям присоединяется деление: любую рациональную функцию можно представить в виде частного двух М. Наконец, рациональные функции содержатся в классе алгебраических функций .
К числу важнейших свойств М. относится то, что любую непрерывную функцию можно с произвольно малой ошибкой заменить М. (теорема Вейерштрасса; точная её формулировка требует, чтобы данная функция была непрерывна на каком-либо ограниченном, замкнутом множестве точек, например на отрезке числовой оси). Этот факт, доказываемый средствами математического анализа, даёт возможность приближённо выражать М. любую связь между величинами, изучаемую в каком-либо вопросе естествознания и техники. Способы такого выражения исследуются в специальных разделах математики (см. Приближение и интерполирование функций , Наименьших квадратов метод ).
В элементарной алгебре многочленом иногда называются такие алгебраические выражения, в которых последним действием является сложение или вычитание, например
- Предыдущая
- 18/23
- Следующая
