Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (КВ) - Большая Советская Энциклопедия "БСЭ" - Страница 49
Оптические К. м. особенно удобны для измерения слабых полей, < 1 э. Чувствительность, которая может быть достигнута при помощи таких приборов, ~10–6—10–7э, что позволяет измерять очень слабые поля, в частности в космическом пространстве.
Сверхпроводящий магнитометр основан на квантовании магнитного потока, захваченного сверхпроводящим кольцом. Величина захваченного потока кратна кванту магнитного потока Ф= 2×10–7э ×см2. Полный ток, протекающий через параллельные соединения двух переходов Джозефсона (сверхпроводящее кольцо, разделённое по диаметру очень тонким слоем изолятора; см. Джозефсона эффект) в результате сложения токов, проходящих по каждой из ветвей (рис. 3), изменяется пропорционально cos e/
Ф, где Ф — магнитный поток, охватываемый кольцом, е — заряд электрона. Этот ток достигает максимума всякий раз, когда Ф = nФ (n — целое число). Наблюдая за изменениями тока, проходящего через двойной переход Джозефсона, можно измерять магнитный поток Ф и, зная площадь сечения перехода, определить напряжённость измеряемого магнитного поля. Если площадь, охватываемая двумя переходами, равна 1 мм2, то максимумы тока разделены интервалом в 2g. Таким методом можно регистрировать десятую часть этого интервала. Чувствительность метода составляет в этом случае 0,2 гаммы. Для рассмотренного примера наиболее сильное поле, которое можно измерить, составляет около 20 гамм.Все К. м. не боятся вибраций; их показания не зависят от ориентации прибора относительно измеряемого поля Н, слабо зависят от изменения температуры, давления, влажности и т.п.
Лит.: Померанцев Н. М., Рыжков В. М., Скроцкий Г. В., Физические основы квантовой магнитометрии, М., 1972; Абрагам А., Ядерный магнетизм, пер. с англ., М., 1963.
Г. В. Скроцкий.
Рис. 2. Схема оптического квантового магнитометра: Л — источник света; СФ — светофильтр; П1 — поляроид; П2 — пластинка (l/4), создающая разность фаз 90° для получения циркулярно поляризованного света; К — колба, наполненная парами щелочного металла: ф — фотоприёмник; Н — измеряемое поле.
Рис. 3. Схема сверхпроводящего магнитометра: С — сверхпроводящее кольцо с двумя переходами Джозефсона (а и б); Т — согласующий трансформатор; У1 — узкополосный усилитель с детектором; У2 — усилитель постоянного тока; Р — самописец. Магнитный поток через кольцо (перпендикулярный плоскости рисунка — сверху вниз) изображен крестиками. Его изменение приводит к появлению периодической эдс на входе усилителя У1.
Рис. 1. Схема протонного магнитометра: L — катушка, создающая вспомогательное намагничивающее поле H; П — катушка, в которой возникает эдс, обусловленная прецессией ядерных моментов вокруг измеряемого магнитного поля Н; У — усилитель сигнала; Ч — частотомер, градуированный в э.
Квантовый усилитель
Ква'нтовый усили'тель, устройство для усиления электромагнитных волн за счёт вынужденного излучения возбуждённых атомов, молекул или ионов. Эффект усиления в К. у. связан с изменением энергии внутриатомных (связанных) электронов, движение которых описывается квантовой механикой. Поэтому, в отличие, например, от ламповых усилителей, в которых используются потоки свободных электронов, движение которых хорошо описывается классической механикой, эти усилители получили название квантовых (см. Квантовая электроника).
Т. к. кроме вынужденных квантовых переходов возбуждённых атомов в состояние с меньшей энергией возможны их самопроизвольные (спонтанные) переходы, в результате которых излучаются волны, имеющие случайные амплитуду, фазу и поляризацию, то они добавляются к усиливаемой волне в виде шумов. Спонтанное излучение является единственным, принципиально неустранимым источником шумов К. у. Мощность спонтанного излучения очень мала в радиодиапазоне и резко растет при переходе к оптическому диапазону. В связи с этим К. у. радиодиапазона (мазеры) отличаются исключительно низким уровнем собственных шумов [в них отсутствуют шумы, связанные с неравномерностью электронного потока, неизбежные в радиолампах (см. Дробовой шум); кроме того, К. у. радиодиапазона работают при температурах, близких к абсолютному нулю, и шумы, связанные с тепловым движением электронов в цепях усилителя, очень малы]. Благодаря чрезвычайно низкому уровню шумов чувствительность К. у., т. е. способность усиливать очень слабые сигналы, велика. К. у. применяются в качестве входных ступеней в самых высокочувствительных радиоприёмных устройствах в диапазоне длин волн от 4 мм до 50 см. К. у. радиодиапазона значительно увеличили дальность действия космических линий связи с межпланетными станциями, планетных радиолокаторов и радиотелескопов.
В оптическом диапазоне К. у. широко используются как усилители мощности лазерного излучения. К. у. света имеют много общего по принципу действия и конструкции с квантовыми генераторами света (см. Лазер).
Вынужденный переход атома из состояния с энергией E2 в состояние с меньшей энергией E1 сопровождающийся испусканием кванта электромагнитной энергии E2 - E1 = hn (n— частота вынуждающей и испускаемой волн, h — Планка постоянная), приводит к усилению колебаний. Усиление, создаваемое одним атомом, очень мало. Но если колебание частоты n распространяется в веществе, содержащем большое число одинаковых возбуждённых атомов, находящихся на уровне E2, то усиление может стать достаточно большим. Атомы же, находящиеся на нижнем уровне E1, в результате вынужденного поглощения, наоборот, ослабляют волну. В результате вещество будет ослаблять или усиливать волну в зависимости от того, каких атомов в ней больше, невозбуждённых или возбуждённых, или, как говорят, какой из уровней энергии более населён атомами.
Если вещество находится в состоянии равновесия термодинамического, то распределение частиц по уровням энергии определяется его температурой, причём уровень с меньшей энергией более населён, чем уровень с большей энергией (рис. 1; см. также Больцмана статистика). Такое вещество всегда поглощает электромагнитные волны. Вещество начинает усиливать — становится активным, лишь тогда, когда равновесие нарушается и возбуждённых атомов становится больше, чем невозбуждённых (инверсия населённостей). Чем больше число атомов на верхнем уровне превышает число атомов, находящихся на нижнем уровне, т. е. чем больше инверсная разность населённости DNи= N2 — N1, тем эффективней усиление.
Однако инверсное состояние вещества не может существовать сколь угодно долго. После прекращения внешнего воздействия в результате теплового движения частиц и взаимодействия между ними через некоторое время снова устанавливается равновесное распределение населённостей уровней (рис. 1). Этот процесс (релаксация) происходит и во время действия внешнего возмущения, стремясь восстановить тепловое равновесие в веществе. Поэтому внешнее воздействие должно быть достаточно сильным, чтобы привести вещество в состояние с инверсией населённостей и не должно быть однократным.
- Предыдущая
- 49/63
- Следующая
