Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (КВ) - Большая Советская Энциклопедия "БСЭ" - Страница 28
1. Квантованное свободное поле. Вакуумное состояние поля, или физический вакуум. Рассмотрим электромагнитное поле, или — в терминах квантовой теории — поле фотонов. Такое поле имеет запас энергии и может отдавать её порциями. Уменьшение энергии поля на h n означает исчезновение одного фотона частоты n, или переход поля в состояние с уменьшившимся на единицу числом фотонов. В результате последовательности таких переходов в конечном итоге образуется состояние, в котором число фотонов равно нулю, и дальнейшая отдача энергии полем становится невозможной. Однако, с точки зрения К. т. п., электромагнитное поле не перестаёт при этом существовать, оно лишь находится в состоянии с наименьшей возможной энергией. Поскольку в таком состоянии фотонов нет, его естественно назвать вакуумным состоянием электромагнитного поля, или фотонным вакуумом. Следовательно, вакуум электромагнитного поля — низшее энергетическое состояние этого поля.
Представление о вакууме как об одном из состояний поля, столь необычное с точки зрения классических понятий, является физически обоснованным. Электромагнитное поле в вакуумном состоянии не может быть поставщиком энергии, но из этого не следует, что вакуум вообще никак не может проявить себя. Физический вакуум — не «пустое место», а состояние с важными свойствами, которые проявляются в реальных физических процессах (см. ниже). Аналогично, и для др. частиц можно ввести представление о вакууме как о низшем энергетическом состоянии полей этих частиц. При рассмотрении взаимодействующих полей вакуумным называют низшее энергетическое состояние всей системы этих полей.
Если полю, находящемуся в вакуумном состоянии, сообщить достаточную энергию, то происходит возбуждение поля, т. е. рождение частицы — кванта этого поля. Т. о., появляется возможность описать порождение частиц как переход из «ненаблюдаемого» вакуумного состояния в состояние реальное. Такой подход позволяет перенести в К. т. п. хорошо разработанные методы квантовой механики — свести изменение числа частиц данного поля к квантовым переходам этих частиц из одних состояний в другие.
Взаимные превращения частиц, порождение одних и уничтожение других, можно количественно описывать при помощи так называемого метода вторичного квантования [предложенного в 1927 П. Дираком и получившего дальнейшее развитие в работах В. А. Фока (1932)].
2. Вторичное квантование. Переход от классической механики к квантовой называют просто квантованием, или реже — «первичным квантованием». Как уже говорилось, такое квантование не даёт возможности описывать изменение числа частиц в системе. Основной чертой метода вторичного квантования является введение операторов, описывающих порождение и уничтожение частиц. Поясним действие этих операторов на простом примере (или модели) теории, в которой рассматриваются одинаковые частицы, находящиеся в одном и том же состоянии (например, все фотоны считаются имеющими одинаковую частоту, направление распространения и поляризацию). Т. к. число частиц в данном состоянии может быть произвольным, то этот случай соответствует бозе-частицам, или бозонам,
подчиняющимся Бозе — Эйнштейна статистике.
В квантовой теории состояние системы частиц описывается волновой функцией или вектором состояния. Введём для описания состояния с N частицами вектор состояния YN; квадрат модуля YN, |YN|2, определяющий вероятность обнаружения N частиц, обращается, очевидно, в 1, если N достоверно известно. Это означает, что вектор состояния с любым фиксированным N нормирован на 1. Введём теперь оператор уничтожения частицы а– и оператор рождения частицы а+. По определению, а– переводит состояние с N частицами в состояние с N—1 частицей, т. е.
(3)Аналогично, оператор порождения частицы а+ переводит состояние YN в состояние с N + 1 частицей:
, (4)[множители
в (3) и в (4) вводятся именно для выполнения условия нормировки: |YN|2= 1]. В частности, при N = 0 а+Y = Y1, где Y — вектор состояния, характеризующий вакуум; т. е. одночастичное состояние получается в результате порождения из «вакуума» одной частицы. Однако а–Y = 0, поскольку невозможно уничтожить частицу в состоянии, в котором частиц нет; это равенство можно считать определением вакуума. Вакуумное состояние Y имеет в К. т. п. особое значение, т.к. из него при помощи операторов а+ можно получить любое состояние. Действительно, в рассматриваемом случае (когда состояние всей системы определяется только числом частиц),, (5)……………………………………
Легко показать, что порядок действия операторов а– и а+ не безразличен. Действительно, а–(а+Y) = а–Y1 = Y, в то время как а+(а–Y) = 0. Т. о., (a–a+ — a+a–)Y = Y, или
a–a+—a+a– = 1, (6)
т. е. операторы а+ и а–являются непереставимыми (некоммутирующими). Соотношения типа (6), устанавливающие связь между действием двух операторов, взятых в различном порядке называется перестановочными соотношениями, или коммутационными соотношениями для этих операторов, а выражения вида
— коммутаторами операторов и .Если учесть, что частицы могут находиться в различных состояниях, то, записывая операторы порождения и уничтожения, надо дополнительно указывать, к какому состоянию частицы эти операторы относятся. В квантовой теории состояния задаются набором квантовых чисел, определяющих энергию, спин и др. физические величины; для простоты обозначим всю совокупность квантовых чисел одним индексом n: так, а+n обозначает оператор рождения частицы в состоянии с набором квантовых чисел n. Средние числа частиц, находящихся в состояниях, соответствующих различным n, называются числами заполнения этих состояний.
Рассмотрим выражение a–n а+mY. Сначала на Y действует «ближайший» к нему оператор а+m; это отвечает порождению частицы в состоянии m. Если n = m, то последующее действие оператора а–n приводит опять к Y, т. е. а–nа+nY0 = Y. Если n ¹ m, то а–nа+mY0 = 0, поскольку невозможно уничтожение таких частиц, которых нет (оператор а–n описывает уничтожение частиц в таких состояниях n, каких не возникает при действии a+n на Y). С учетом различных состоянии частиц перестановочные соотношения для операторов рождения и уничтожения имеют следующий вид:
- Предыдущая
- 28/63
- Следующая
