Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (КО) - Большая Советская Энциклопедия "БСЭ" - Страница 183
Комбинат бытового обслуживания
Комбина'т бытово'го обслу'живания, см. в ст. Бытовое обслуживание .
Комбинатор гидротурбин
Комбина'тор гидротурби'н, устройство для регулирования взаимного расположения лопастей рабочего колеса и лопаток направляющего аппарата ; применяется в реактивных гидротурбинах двойного регулирования. Наиболее благоприятное для кпд взаимное расположение лопаток и лопастей определяется по диаграмме — комбинаторной кривой. К. г. позволяет получать максимальный кпд турбины при изменении режима её работы (напора, расхода, мощности).
Комбинаторика
Комбинато'рика, 1) то же, что математический комбинаторный анализ . 2) Раздел элементарной математики, связанный с изучением количества комбинаций, подчинённых тем или иным условиям, которые можно составить из заданного конечного множества объектов (безразлично, какой природы; это могут быть буквы, цифры, какие-либо предметы и т.п.).
Наиболее употребительные формулы К.:
Число размещений. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (учитывая порядок, в котором выбираются предметы)? Число способов равно
An m =
An m называют числом размещений из n элементов по m.
Число перестановок. Рассмотрим задачу: сколькими способами можно установить порядок следования друг за другом n различных предметов? Число способов равно
Pn = 1Ч2Ч 3... n= n!
(знак n! читается: «n факториал»; оказывается удобным рассматривать также 0!, полагая его равным 1). Pn называют числом перестановок n элементов.
Число сочетаний. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (безразлично, в каком порядке выбираются предметы)? Число способов такого выбора равно
Cn m =
Cn m называют числом сочетаний из n элементов по m. Числа Cn m получаются как коэффициенты разложения n-й степени двучлена (бинома, см. Ньютона бином ):
(a+b) n =Cn an + Cn 1 an-1 b +Cn 2 an-2 b2 +... + Cn n-1 abn-1 + Cn n bn ,
и поэтому они называются также биномиальными коэффициентами. Основные соотношения для биномиальных коэффициентов:
Cn m =Cn n-m , Cn m + Cn m+1 = Cn+1 m+1
Cn + Cn 1 + Cn 2 +...+ Cn n-1 + Cn n = 2n ,
Cn — Cn 1 + Cn 2 —...+ (—1) n Cn n = 0.
Числа An m , Pm и Cn m связаны соотношением:
An m =Pm Cn m .
Рассматриваются также размещения с повторением (т. е. всевозможные наборы из m предметов n различных видов, порядок в наборе существен) и сочетания с повторением (то же, но порядок в наборе не существен). Число размещений с повторением даётся формулой nm , число сочетаний с повторением — формулой Cm n +m -1 .
Основные правила при решении задач К.: Правило суммы. Пусть некоторый предмет А может быть выбран из совокупности предметов m способами, а другой предмет В можно выбрать n способами. Тогда имеется т + n возможностей выбрать либо предмет A, либо предмет В.
Правило произведения. Пусть предмет А можно выбрать m способами и после каждого такого выбора предмет В можно выбрать n способами; тогда выбор пары (А, В ) в указанном порядке можно осуществить m + n способами.
Принцип включения и исключения. Пусть имеется N предметов, которые могут обладать n свойствами a1 , a2 ,..., an . Обозначим через N (ai , aj , ..., ak ) число предметов, обладающих свойствами ai , aj ,..., ak и, быть может, какими-либо другими свойствами. Тогда число N' предметов, не обладающих ни одним из свойств, a1 , a2 ,..., an , даётся формулой
= N—N (a1 ) — N (a2 ) —... —N (an ) + N (a1 , a2 ) + N (a1 , a3 ) +... + N (an-1 , an ) — N (a1 , a2 , a3 ) —... — N (an-2 , an-1 , an ) +... +(—1) n N (a1 ,..., an )
Лит.: Netto E. Lehrbuch der Combinatorik, 2 Aufl., Lpz. — B., 1927.
В. Е. Тараканов.
Комбинаторная логика
Комбинато'рная ло'гика, ветвь математической логики, изучающая комбинаторы и их свойства. В качестве основных понятий в К. л. выбираются функция и операция применения функции к аргументу (аппликация). Комбинаторами называют члены некоторого класса операций над функциями, замкнутого относительно аппликации. Сформулированное в терминах К. л. понятие «комбинаторно определимой функции» явилось одним из первых способов уточнения понятия алгоритма. Начало К. л. положено работой советского математика М. И. Шейнфинкеля (1924), большая часть результатов принадлежит американскому логику Х. Карри. К. л. находит широкое применение в теории языков программирования.
Лит.: Яновская С. А., Логика комбинаторная, в кн.: Философская энциклопедия, т. 3, М., 1964; SchonfinkeI М., Uber die Bausteine der mathema-tischen Logik, «Mathematische Annalen», 1924, Bd 92; Curry H. B., Feys R., Combinatory logic, Amst., 1958; Curry H. B., Recent advances in combinatory logic, «Bulletin de la Societe mathematique de Belgique», 1968, t. 20, № 3.
- Предыдущая
- 183/720
- Следующая
