Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Большая Советская Энциклопедия (КО) - Большая Советская Энциклопедия "БСЭ" - Страница 171


171
Изменить размер шрифта:

  При изучении К. большое значение имеют те или иные способы сличения друг с другом различных К. Одним из наиболее плодотворных является гомоморфное отображение (гомоморфизм), т. е. такое однозначное отображение R ®R' кольца R на кольцо R', что из а ® a', b ®b' следует а + b ® a' +b' и ab ® a'b'. Если это отображение также и взаимно однозначное, то оно называется изоморфизмом, а кольца R и R' изоморфными. Изоморфные К. обладают одинаковыми алгебраическими свойствами.

  Множество М элементов кольца R называют подкольцом, если М само является К. относительно операций, определённых в R. Подкольцо М называют левым (правым или двусторонним) идеалом кольца R, если для любых элементов т из М и r из R произведение rm (соответственно mr или как rm, так и mr ) лежит в М. Элементы а и b кольца R называют сравнимыми по идеалу М, если а — b принадлежит М. Всё К. разбивается на классы сравнимых элементов — классы вычетов по идеалу М. Если определить сложение и умножение классов вычетов по двустороннему идеалу М через сложение и умножение элементов этих классов, то сами классы вычетов образуют К. — фактор кольцо R/M кольца R по идеалу М. Имеет место теорема о гомоморфизме К.: если каждому элементу К. поставить в соответствие содержащий его класс, то получают гомоморфное отображение кольца R на факторкольцо RM; обратно, если R гомоморфно отображается на R', то множеством элементов из R, отображающихся в нуль кольца R', будет двусторонним идеалом в R, и R' изоморфно R/M.

  Среди различных типов К. легче других поддаются изучению и сравнительно чаще находят приложение так называемые алгебры: кольцо R называют алгеброй над полем Р, если для любых a из Р и r из R определено произведение ar также из R, причём (a + b) r = ar + br , a(r + s )= ar + as, (ab) r = a(br), a(rs ) = (ar ) s = r (as ), er = r для любых a, b из Р и r, s из R, где e — единица поля Р. Если все элементы алгебры линейно выражаются через n линейно независимых элементов (см. Линейная зависимость ), то R называют алгеброй конечного ранга n, или гиперкомплексной системой (см. Гиперкомплексные числа ). Примерами алгебр могут служить комплексные числа (алгебра ранга 2 над полем действительных чисел), полное К. матриц с элементами из поля Р (которое является алгеброй ранга n2 над Р ), К. примера 10 (алгебра ранга 4 над полем действительных чисел), К. примера 8 и др.

  Для целых чисел и К. многочленов справедлива теорема об однозначной разложимости элемента в произведение простых, т. с. далее не разложимых элементов. Эта теорема верна для любых К. главных идеалов, то есть областей целостности, в которых любой идеал состоит из кратных одного элемента. Частным случаем таких К. являются евклидовы К., то есть К., где любому элементу а ¹ 0 соответствует неотрицательное целое число n (a ), причём n (ab ) ³ n (a ) и для любых а и b ¹ 0 существуют такие q и r, что а = bq +r и либо n (r )