Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ГЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 127
В Г. а. разработан ряд способов астрономических наблюдений, различающихся в зависимости от того, какие величины определяются (время, широта, долгота или азимут), какие светила для этого наблюдаются (звёзды или Солнце) и как и какие величины непосредственно измеряются при наблюдениях небесного светила (зенитное расстояние z, высота h, азимут а* и момент Т прохождения светила через избранную плоскость). Выбор этих способов зависит от поставленной задачи, точности её решения, наличия инструментов и т. д. При этом небесные координаты наблюдаемого светила, а именно его прямое восхождение а и склонение a, считаются известными; они приводятся в астрономических ежегодниках и каталогах звёзд.
Соединив на небесной сфере (рис.) полюс PN, зенит места Z и наблюдаемое светило а дугами больших кругов, получим т. н. параллактический треугольник PNZs, в котором угол при вершине Z есть дополнение азимута а* светила до 180° и угол при вершине PN равен часовому углу t светила.
Все способы астрономических определений основаны на решении параллактического треугольника после измерения его некоторых элементов (см. Сферическая астрономия). Так, измерив зенитное расстояние Z светила в момент Т по хронометру и зная широту j места, можно определить часовой угол t светила из выражения
cosz = sinj sin d + cosj cosd cost
и по равенству t = s — a= Т + u — a найти поправку u к показанию хронометра и местное звёздное время s. Зная поправку хронометра u и измерив зенитное расстояние Z светила, можно определить широту j места. Поправку хронометра выгодно определять из наблюдений звёзд в первом вертикале, а широту места — в меридиане, т. е. в кульминации небесного светила. Если измерить зенитные расстояния двух звёзд, расположенных в меридиане к Ю. или С. от зенита места, то тогда
j = dS — zS = dN — zN.
Особенно удобны способы, основанные на измерении окулярным микрометроммалых разностей зенитных расстояний северных и южных звёзд в меридиане (см. Талькотта способ). В способах соответственных высот отмечают моменты T1 и T2прохождений двух звёзд через один и тот же альмукантарат. Если известна j, то получают u (см. Цингера способ), а если известна u, то определяют j (см. Певцова способ). Из наблюдений серии равномерно распределённых по азимуту звёзд на постоянной высоте 45° или 30° определяют j и l (см. Мазаева способ).
Азимут а* небесного светила определяют, измеряя его часовой угол или зенитное расстояние и зная широту j места наблюдения. Прибавляя к азимуту наблюдаемого светила (обычно Полярной звезды) горизонтальный угол Q между ним и земным предметом, получают азимут а земного предмета.
Разность долгот двух пунктов равна разности местных звёздных времён в этих пунктах или разности поправок хронометра, отнесённых к одному физическому моменту по известному ходу часов, так что l2 — l1 = s2 — s1 = (T + u2) — (Т + u1) = u2 — u1 + T2 — T1. Долготы l отсчитываются от меридиана Гринвича. Поэтому l = s — S = u — U. Поправки хронометра u относительно местного звёздного времени s определяют из наблюдений звёзд, а U относительно гринвичского звёздного времени S — из приёма ритмических сигналов времени по радиотелеграфу. В современных высокоточных работах ошибки определения широты, долготы и азимута не превышают ± 0,5".
Лит.: Цингер Н. Я., Курс практической астрономии, М., 1924: Вентцель М. К., Полевая астрономия, ч. 1—2, М., 1938—40; Блажко С. Н. . Курс практической астрономии, М. — Л., 1951; Цветков К. А., Практическая астрономия, 2 изд., М., 1951; Кузнецов А. Н., Геодезическая астрономия, М., 1966.
А .В. Буткевич.
Рис. к ст. Геодезическая астрономия.
Геодезическая гравиметрия
Геодезическая гравиметрия, раздел геодезии, в котором рассматриваются теории и методы использования результатов измерения силы тяжести для решения научных и практических задач геодезии. Основное содержание Г. г. составляют теории и методы определения внешнего поля потенциала W силы тяжести g Земли по измерениям на земной поверхности S и астрономо-геодезическим материалам. Г. г. включает также теорию нивелирных высот и обработку астрономо-геодезических сетей в связи с особенностями гравитационного поля Земли. Обычно из этого поля выделяют правильное и известное поле потенциала U т. н. нормальной Земли сравнения, представляемой в виде уровенного эллипсоида. Центры масс и оси вращения реальной и нормальной Земли совпадают. Основную задачу Г. г. сводят к выводу возмущающего потенциала Т = W — U, который определяют из решения граничных задач математической физики. На земной поверхности Т удовлетворяет граничному условию
где Н — высота над эллипсоидом, g— сила тяжести в поле U, HQ— нормальная высота, выводимая из условия, что приращение (gdh потенциала W от начала счёта высот измерено в поле U, dh — элементарное превышение геометрического нивелирования. Для вывода Т разработано несколько методов, которые сводятся к решению соответствующих интегральных уравнений.
В равнинных районах некоторые практические задачи можно решать упрощёнными методами вывода Т и его производных. Эти методы основаны на условии HQ = 0, вводимом после вычисления разностей g — у (HQ). Такой подход, например, допустим при астрономо-гравиметрическом нивелировании. В этом случае задачи Г. г. будут решены в явном виде замкнутыми формулами. Значение Т на земной поверхности определяет формула Стокса (1849)
R — радиус земной сферы, ds — её элемент и y— дуга большого круга между фиксированной точкой и текущей точкой, в которой задана сила тяжести. Эта формула описывает внешнее гравитационное поле земной сферы. Из неё можно вывести выражение для любого элемента гравитационного поля Земли в равнинных её областях.
Современная Г. г. основана на работах (1945—60) М. С. Молоденского и изучает способы решения граничных задач, условия их разрешимости, плотность и точность необходимых измерений.
Лит.: Молоденский М. С., Юркина М. И., Еремеев В. Ф., Методы изучения внешнего гравитационного поля и фигуры Земли, «Тр. Центрального научно-исследовательского института геодезии, аэросъёмки и картографии», 1960, в. 131; Бровар В. В., Магницкий В. А., Шимберев Б. П., Теория фигуры Земли, М., 1961.
М. И. Юркина.
Геодезическая задача
Геодези'ческая зада'ча, связана с определением взаимного положения точек земной поверхности и подразделяется на прямую и обратную задачу. Прямой Г. з. называют вычисление геодезических координат — широты и долготы некоторой точки, лежащей на земном эллипсоиде, по координатам др. точки и по длине и азимуту геодезической линии, соединяющей эти точки. Обратная Г. з. заключается в определении по геодезическим координатам двух точек на земном эллипсоиде длины и азимута геодезической линии между этими точками. В зависимости от длины геодезической линии, соединяющей рассматриваемые точки, применяются различные методы и формулы, разработанные в геодезии. По размерам принятого земного эллипсоида составляются таблицы, облегчающие решение Г. з. и рассчитанные на использование определённой системы формул. Г. з. в том и другом виде возникает при обработке триангуляции, а также во всех тех случаях, когда необходимо определить взаимное положение двух точек по длине и направлению соединяющей их линии или же расстояние и направление между этими точками по их геодезическим координатам. В ряде случаев Г. з. решают в пространственных прямоугольных координатах по формулам аналитической геометрии в пространстве. В этих случаях вместо длины и азимута геодезических линии, соединяющей две точки, используют длину и пространственные компоненты направления прямой линии между этими точками.
- Предыдущая
- 127/297
- Следующая
