Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ГА) - Большая Советская Энциклопедия "БСЭ" - Страница 93
Одарённость Г. не ограничивалась областью науки: он был музыкантом, художником, любителем искусств и блестящим литератором. Его научные трактаты, большая часть которых написана на народном итальянском языке, хотя Г. в совершенстве владел латынью, могут быть отнесены также к художественным произведениям по простоте и ясности изложения и блеску литературного стиля. Г. переводил с греческого языка на латынь, изучал античных классиков и поэтов Возрождения (работы «Заметки к Ариосто», «Критика Тассо»), выступал во Флорентийской академии по вопросам изучения Данте, написал бурлескную поэму «Сатира на носящих тогу». Г. — соавтор канцоны А. Сальвадори «О звёздах Медичей» — спутниках Юпитера, открытых Г. в 1610.
Соч.: Le opere, ed. nationale, v. 1—20, Firenze, 1890—1909: Pensieri, mott e sentenze, tratti dalla editione nationale delle opere da A. Favaro, Firenze, 1910; Le opere, Firenze, 1933 (Scritti Letterari, v. 9); в рус. пер. — Диалог о двух главнейших системах мира птоломеевой и коперниковой, М, — Л., 1948; Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению, М. — Л., 1934; Рассуждение о телах, пребывающих в воде, и тех, которые в neй движутся, в сборнике: Начала гидростатики, М. — Л., 1933; Послание к Франческо Инголи, в сборнике: Галилео Галилей (1564—1642), М. — Л., 1943, Избр. труды, т. 1-2, М., 1964.
Лит.: Галилео Галилей (1564—1642). Сб., посвященный 300-летней годовщине со дня смерти, М. — Л., 1943 (статьи С. И. Вавилова, А. Н. Крылова и др.); Выгодский М. Я., Галилей и инквизиция, М. — Л., 1934; Ольшк и Д., История научной литературы на новых языках, пер. с нем., т. 3, М. — Л., 1933; Де Санктис Ф., История итальянской литературы, т. 2, М., 1964; Кузнецов Б. Г., Галилей, [М.], 1964: Галилео Галилей (1564—1642). Указатель литературы, М., 1940; Cervini М., Galileo Galilei. Antologia, Torino, 1952; Nel quarto centenario della nascita di Galileo Galilei, Mil.,.[1966]; Boffito G., Biblio-grafia Galileiana, [Roma], 1943.
С. И. Вавилов (статья из 2 изд. БСЭ с некоторыми сокращениями).
«Диалог о двух главнейших системах мира». Фронтиспис издания на латинском языке (Лион, 1641).
Титульный лист к первому изданию «Бесед и математических доказательств, касающихся двух новых отраслей науки...» (Лейден, 1638).
Г. Галилей.
Галилея
Галиле'я (греч. Galilaia, от древнееврейского Галил, буквально — область), историческая область в Северной Палестине . Первоначальное население — хурриты и хананеи, в 13 — 12 вв. до н. э. захвачена и заселена израильтянами; главные центры: Сепфорис, Гисхала, Тивериада. Согласно христианской традиции, Г. была основным районом религиозных проповедей Иисуса. В конце 2 в. до н. э. присоединена к Иудее. В 1 в. до н. э. и 1 в. н. э. в Г. происходили народные восстания против иудейской рабовладельческой аристократии, тесно связанной с Римом, и против римских ставленников — царей Ирода, Агриппы II и др.
Лит.: Лившиц Г. М., Классовая борьба в Иудее и восстания против Рима, Минск, 1957.
Д. Г. Редер.
Галилея преобразования
Галиле'я преобразова'ния, см. в ст. Галилея принцип относительности .
Галилея принцип относительности
Галиле'я при'нцип относи'тельности, принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы. Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Это положение было впервые установлено Г. Галилеем в 1636. Одинаковость законов механики для инерциальных систем Галилей иллюстрировал на примере явлений, происходящих под палубой корабля, покоящегося или движущегося равномерно и прямолинейно (относительно Земли, которую можно с достаточной степенью точности считать инерциальной системой отсчёта): «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно... Бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, а вы на корме, чем когда ваше взаимное положение будет обратным; капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей» («Диалог о двух главнейших системах мира птоломеевой и коперниковой», М. — Л., 1948, с. 147).
Движение материальной точки относительно: её положение, скорость, вид траектории зависят от того, по отношению к какой системе отсчёта (телу отсчёта) это движение рассматривается. В то же время законы классической механики (см. Ньютона законы механики ), т. е. соотношения, которые связывают величины, описывающие движение материальных точек и взаимодействие между ними, одинаковы во всех инерциальных системах отсчёта. Относительность механического движения и одинаковость (безотносительность) законов механики в разных инерциальных системах отсчёта и составляют содержание Г. п. о.
Математически Г. п. о. выражает инвариантность (неизменность) уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы к другой — преобразований Галилея.
Пусть имеются две инерциальные системы отсчёта, одну из которых, S, условимся считать покоящейся; вторая система, S', движется по отношению к S с постоянной скоростью u так, как показано на рисунке. Тогда преобразования Галилея для координат материальной точки в системах S и S' будут иметь вид:
x' = x - ut, у' = у, z' = z, t' = t (1)
(штрихованные величины относятся к системе S', нештрихованные — к S). Т. о., время в классической механике, как и расстояние между любыми фиксированными точками, считается одинаковым во всех системах отсчёта.
Из преобразований Галилея можно получить соотношения между скоростями движения точки и её ускорениями в обеих системах:
v' = v - u, (2)
a' = a.
В классической механике движение материальной точки определяется вторым законом Ньютона:
F = ma, (3)
где m — масса точки, a F — равнодействующая всех приложенных к ней сил. При этом силы (и массы) являются в классической механике инвариантами, т. е. величинами, не изменяющимися при переходе от одной системы отсчёта к другой. Поэтому при преобразованиях Галилея уравнение (3) не меняется. Это и есть математическое выражение Г. п. о.
Г. п. о. справедлив лишь в классической механике, в которой рассматриваются движения со скоростями, много меньшими скорости света. При скоростях, близких к скорости света, движение тел подчиняется законам релятивистской механики Эйнштейна (см. Относительности теория ), которые инвариантны по отношению к другим преобразованиям координат и времени — Лоренца преобразованиям (при малых скоростях они переходят в преобразования Галилея).
В. И. Григорьев.
Инерциальная система отсчёта S' (с координатными осями x' , y' , z' ) движется относительно другой инерциальной системы S (с осями х , у , z ) в направлении оси х с постоянной скоростью u . Координатные оси выбраны так, что в начальный момент времени (t = 0) соответствующие оси координат совпадают в обеих системах.
- Предыдущая
- 93/191
- Следующая
