Выбрать книгу по жанру
Фантастика и фэнтези
- Боевая фантастика
- Героическая фантастика
- Городское фэнтези
- Готический роман
- Детективная фантастика
- Ироническая фантастика
- Ироническое фэнтези
- Историческое фэнтези
- Киберпанк
- Космическая фантастика
- Космоопера
- ЛитРПГ
- Мистика
- Научная фантастика
- Ненаучная фантастика
- Попаданцы
- Постапокалипсис
- Сказочная фантастика
- Социально-философская фантастика
- Стимпанк
- Технофэнтези
- Ужасы и мистика
- Фантастика: прочее
- Фэнтези
- Эпическая фантастика
- Юмористическая фантастика
- Юмористическое фэнтези
- Альтернативная история
Детективы и триллеры
- Боевики
- Дамский детективный роман
- Иронические детективы
- Исторические детективы
- Классические детективы
- Криминальные детективы
- Крутой детектив
- Маньяки
- Медицинский триллер
- Политические детективы
- Полицейские детективы
- Прочие Детективы
- Триллеры
- Шпионские детективы
Проза
- Афоризмы
- Военная проза
- Историческая проза
- Классическая проза
- Контркультура
- Магический реализм
- Новелла
- Повесть
- Проза прочее
- Рассказ
- Роман
- Русская классическая проза
- Семейный роман/Семейная сага
- Сентиментальная проза
- Советская классическая проза
- Современная проза
- Эпистолярная проза
- Эссе, очерк, этюд, набросок
- Феерия
Любовные романы
- Исторические любовные романы
- Короткие любовные романы
- Любовно-фантастические романы
- Остросюжетные любовные романы
- Порно
- Прочие любовные романы
- Слеш
- Современные любовные романы
- Эротика
- Фемслеш
Приключения
- Вестерны
- Исторические приключения
- Морские приключения
- Приключения про индейцев
- Природа и животные
- Прочие приключения
- Путешествия и география
Детские
- Детская образовательная литература
- Детская проза
- Детская фантастика
- Детские остросюжетные
- Детские приключения
- Детские стихи
- Детский фольклор
- Книга-игра
- Прочая детская литература
- Сказки
Поэзия и драматургия
- Басни
- Верлибры
- Визуальная поэзия
- В стихах
- Драматургия
- Лирика
- Палиндромы
- Песенная поэзия
- Поэзия
- Экспериментальная поэзия
- Эпическая поэзия
Старинная литература
- Античная литература
- Древневосточная литература
- Древнерусская литература
- Европейская старинная литература
- Мифы. Легенды. Эпос
- Прочая старинная литература
Научно-образовательная
- Альтернативная медицина
- Астрономия и космос
- Биология
- Биофизика
- Биохимия
- Ботаника
- Ветеринария
- Военная история
- Геология и география
- Государство и право
- Детская психология
- Зоология
- Иностранные языки
- История
- Культурология
- Литературоведение
- Математика
- Медицина
- Обществознание
- Органическая химия
- Педагогика
- Политика
- Прочая научная литература
- Психология
- Психотерапия и консультирование
- Религиоведение
- Рефераты
- Секс и семейная психология
- Технические науки
- Учебники
- Физика
- Физическая химия
- Философия
- Химия
- Шпаргалки
- Экология
- Юриспруденция
- Языкознание
- Аналитическая химия
Компьютеры и интернет
- Базы данных
- Интернет
- Компьютерное «железо»
- ОС и сети
- Программирование
- Программное обеспечение
- Прочая компьютерная литература
Справочная литература
Документальная литература
- Биографии и мемуары
- Военная документалистика
- Искусство и Дизайн
- Критика
- Научпоп
- Прочая документальная литература
- Публицистика
Религия и духовность
- Астрология
- Индуизм
- Православие
- Протестантизм
- Прочая религиозная литература
- Религия
- Самосовершенствование
- Христианство
- Эзотерика
- Язычество
- Хиромантия
Юмор
Дом и семья
- Домашние животные
- Здоровье и красота
- Кулинария
- Прочее домоводство
- Развлечения
- Сад и огород
- Сделай сам
- Спорт
- Хобби и ремесла
- Эротика и секс
Деловая литература
- Банковское дело
- Внешнеэкономическая деятельность
- Деловая литература
- Делопроизводство
- Корпоративная культура
- Личные финансы
- Малый бизнес
- Маркетинг, PR, реклама
- О бизнесе популярно
- Поиск работы, карьера
- Торговля
- Управление, подбор персонала
- Ценные бумаги, инвестиции
- Экономика
Жанр не определен
Техника
Прочее
Драматургия
Фольклор
Военное дело
Большая Советская Энциклопедия (ВЕ) - Большая Советская Энциклопедия "БСЭ" - Страница 205
Случайные величины. Если каждому исходу Er испытания Т поставлено в соответствие число х,, то говорят, что задана случайная величина X . Среди чисел x1 , х2 ,......, xs могут быть и равные; совокупность различных значений хг при r = 1, 2,..., s называют совокупностью возможных значений случайной величины. Набор возможных значений случайной величины и соответствующих им вероятностей называется распределением вероятностей случайной величины (см. Распределения ). Так, в примере с бросанием двух костей с каждым исходом испытания (i, j ) связывается случайная величина Х = i + j — сумма очков на обеих костях. Возможные значения суть 2, 3, 4,..., 11, 12; соответствующие вероятности равны 1/36, 2/36, 3/36,..., 2/36, 1/36.
При одновременном изучении нескольких случайных величин вводится понятие их совместного распределения, которое задаётся указанием возможных значений каждой из них и вероятностей совмещения событий
{X1 = x1 }, {X2 = x2 }, …, {Xn = xn } , (6)
где xk — какое-либо из возможных значений величины Xk . Случайные величины называются независимыми, если при любом выборе xk события (6) независимы. С помощью совместного распределения случайных величин можно вычислить вероятность любого события, определяемого этими величинами, например события a< X1 + Х2 +... + Xn < b и т.п.
Часто вместо полного задания распределения вероятностей случайной величины предпочитают пользоваться небольшим количеством числовых характеристик. Из них наиболее употребительны математическое ожидание и дисперсия .
В число основных характеристик совместного распределения нескольких случайных величин, наряду с математическими ожиданиями и дисперсиями этих величин, включаются коэффициенты корреляции и т.п. Смысл перечисленных характеристик в значительной степени разъясняется предельными теоремами (см. раздел Предельные теоремы).
Схема испытаний с конечным числом исходов недостаточна уже для самых простых применений В. т. Так, при изучении случайного разброса точек попаданий снарядов вокруг центра цели, при изучении случайных ошибок, возникающих при измерении какой-либо величины, и т.д. уже невозможно ограничиться испытаниями с конечным числом исходов. При этом в одних случаях результат испытания может быть выражен числом или системой чисел, в других — результатом испытания может быть функция (например, запись изменения давления в данной точке атмосферы за данный промежуток времени), системы функций и т.п. Следует отметить, что многие данные выше определения и теоремы с незначительными по существу изменениями приложимы и в этих более общих обстоятельствах, хотя способы задания распределений вероятностей изменяются (см. Распределения , Плотность вероятности ).
Наиболее серьёзное изменение претерпевает определение вероятности, которое в элементарном случае давалось формулой (2). В более общих схемах, о которых идёт речь, события являются объединениями бесконечного числа исходов (или, как говорят, элементарных событий), вероятность каждого из которых может быть равна нулю. В соответствии с этим свойство, выраженное теоремой сложения, не выводится из определения вероятности, а включается в него.
Наиболее распространённая в настоящее время логическая схема построения основ В. т. разработана в 1933 советским математиком А. Н. Колмогоровым. Основные черты этой схемы следующие. При изучении какой-либо реальной задачи — методами В. т. прежде всего выделяется множество U элементов u, называемых элементарными событиями. Всякое событие вполне описывается множеством благоприятствующих ему элементарных событий и потому рассматривается как некое множество элементарных событий. С некоторыми из событий А связываются определённые числа Р (A ), называемые их вероятностями и удовлетворяющие условиям
1. 0 £ Р (А ) £ 1,
2. P (U ) = 1,
3. Если события A1 ,..., An попарно несовместны и А — их сумма, то
Р (А ) = Р (A1 ) + P (A2 ) + … + Р (An ).
Для создания полноценной математической теории требуют, чтобы условие 3 выполнялось и для бесконечных последовательностей попарно несовместных событий. Свойства неотрицательности и аддитивности есть основные свойства меры множества. В. т. может, таким образом, с формальной точки зрения рассматриваться как часть меры теории . Основные понятия В. т. получают при таком подходе новое освещение. Случайные величины превращаются в измеримые функции, их математические ожидания — в абстрактные интегралы Лебега и т.п. Однако основные проблемы В. т. и теории меры различны. Основным, специфическим для В. т. является понятие независимости событий, испытаний, случайных величин. Наряду с этим В. т. тщательно изучает и такие объекты, как условные распределения, условные математические ожидания и т.п.
Предельные теоремы. При формальном изложении В. т. предельные теоремы появляются в виде своего рода надстройки над ее элементарными разделами, в которых все задачи имеют конечный, чисто арифметический характер. Однако познавательная ценность В. т. раскрывается только предельными теоремами. Так, Бернулли теорема показывает, что при независимых испытаниях частота появления какого-либо события, как правило, мало отклоняется от его вероятности, а Лапласа теорема указывает вероятности тех или иных отклонений. Аналогично смысл таких характеристик случайной величины, как её математическое ожидание и дисперсия, разъясняется законом больших чисел и центральной предельной теоремой (см. Больших чисел закон . Предельные теоремы теории вероятностей).
Пусть
X1 , Х2 ,..., Xn , ... (7)
— независимые случайные величины, имеющие одно и то же распределение вероятностей с EXk = а, DXk = s2 и Yn — среднее арифметическое первых n величин из последовательности (7):
Yn = (X1 + X2 + … +Xn )/n.
В соответствии с законом больших чисел, каково бы ни было e > 0, вероятность неравенства |Yn — a| £ e имеет при n ®¥ пределом 1, и, таким образом, Yn как правило, мало отличается от а. Центральная предельная теорема уточняет этот результат, показывая, что отклонения Yn от а приближённо подчинены нормальному распределению со средним 0 и дисперсией s2 / n. Таким образом, для определения вероятностей тех или иных отклонений Yn от а при больших n нет надобности знать во всех деталях распределение величин Xn , достаточно знать лишь их дисперсию.
В 20-х гг. 20 в. было обнаружено, что даже в схеме последовательности одинаково распределённых и независимых случайных величин могут вполне естественным образом возникать предельные распределения, отличные от нормального. Так, например, если X1 время до первого возвращения некоторой случайно меняющейся системы в исходное положение, Х2 — время между первым и вторым возвращениями и т.д., то при очень общих условиях распределение суммы X1 +... + Xn (то есть времени до n- го возвращения) после умножения на n 1 /a (а — постоянная, меньшая 1) сходится к некоторому предельному распределению. Таким образом, время до n- го возвращения растет, грубо говоря, как n1 /a , то есть быстрее n (в случае приложимости закона больших чисел оно было бы порядка n ).
- Предыдущая
- 205/267
- Следующая
