Выбери любимый жанр

Выбрать книгу по жанру

Фантастика и фэнтези

Детективы и триллеры

Проза

Любовные романы

Приключения

Детские

Поэзия и драматургия

Старинная литература

Научно-образовательная

Компьютеры и интернет

Справочная литература

Документальная литература

Религия и духовность

Юмор

Дом и семья

Деловая литература

Жанр не определен

Техника

Прочее

Драматургия

Фольклор

Военное дело

Последние комментарии
оксана2018-11-27
Вообще, я больше люблю новинки литератур
К книге
Professor2018-11-27
Очень понравилась книга. Рекомендую!
К книге
Vera.Li2016-02-21
Миленько и простенько, без всяких интриг
К книге
ст.ст.2018-05-15
 И что это было?
К книге
Наталья222018-11-27
Сюжет захватывающий. Все-таки читать кни
К книге

Диалоги (август 2003 г.) - Гордон Александр - Страница 24


24
Изменить размер шрифта:

Сейчас в литературе описано приблизительно 20 миллионов молекул, но никто не знает, сколько их на самом деле. И это неизомерные структуры. Если каждой из этих молекул приписать ещё сотню-другую изомеров, то у вас вообще возникает нечто совершенно гигантское. И невольно возникает такой вопрос: а зачем? Я буду пользоваться таким выражением: зачем Господь Бог это создал? Я не утверждаю, что именно он, это уже вопрос веры, но я говорю: зачем? Зачем в природе предусматривается такое гигантское разнообразие?

И один из возможных ответов как раз заключается в том, что благодаря этой возможности структурной изомеризации внутри молекулы может передаваться некоторый сигнал. Хорошо известно, что когда молекула крупная, то какие-то реакции совершаются в так называемых реакционных центрах (это то, что носит название близкодействия). То есть получается, что только какая-то часть молекулы принимает участие в реакции. Вся молекула при этом не принимает непосредственного участия в этой реакции. Маленькая молекула вся сразу начнёт играть, а крупная молекула в какой-то части сыграет, а остальная часть остаётся более или менее неизменной.

Возникает вопрос такого рода – а что дальше? То есть может ли случиться так, что полученный в каком-то одном месте сигнал… А сигнал всегда будет, всегда будет либо поглощение света (то, что носит название хромофорной группи-ровки), либо реакция присоединения, когда какая-то энергия обязательно будет передана в систему – дальше она может быть израсходована на тепло, на столкно-вение, произойдёт простое присоединение, и на этом всё закончится. Но всё может быть и не так.

Мы сейчас немножко об этом и поговорим. Что может быть в молекуле? Рассматривается такой простой пример, как приём и запись оптической информа-ции. Это тоже одно из очень важных свойств молекул. Это в школе сейчас прохо-дят, наверное, все знают, что квантовая система имеет уровни энергии, и, когда происходит облучение этой квантовой системы электромагнитным излучением, энергия поглощается, и вы можете перейти с нижнего уровня на верхний. На ри-сунке это изображено красной линией. А дальше процесс идёт вниз, потому что молекула не может долго находится в возбуждённом состоянии.

Но этот процесс может пойти по двум путям. Первый: мы сразу возвраща-емся в самое нижнее состояние, и тогда это достаточно бесполезная вещь, то есть поглотили, излучили, и ничего не произошло.

А может быть другой путь. Вы попадаете на уровень энергии, который яв-ляется резонирующим с уровнем энергии другого изомера, и тогда у вас происхо-дит переход в другой изомер, то, что часто называют безизлучательным перехо-дом, и после этого происходит высвечивание. У нас появился второй изомер. По-явление этого второго изомера возможно только тогда, когда произошло первич-ное поглощение, иначе он не появится. Значит, происходит следующее – вы как бы записали информацию, у вас остался след от действия исходного сигнала. Это тоже очень важное свойство молекулярных систем – они могут записать инфор-мацию.

Причём эта информация может храниться очень долго, и это, в конечном счёте, может привести к тому, что возникает своеобразная память молекул о некотором внешнем воздействии. Это крайне важная вещь. Я потом немножко об этом скажу – для живого организма, особенно более-менее сложного, характерно наличие памяти, характерно наличие обучения, и результат этого обучения может храниться очень долго. Например, если мы видели какого-то человека, мы запоминаем его образ, и он может годами у нас храниться. При этом нужно, чтобы это сохранение происходило без особенного напряжения, то есть без специальной энергетической подпитки. Здесь так и произойдёт – происходит переход в другой изомер, и он существует очень долго, он запомнил эту информацию и потом результат этого воспоминания существует очень долго. Никакого последующего действия не нужно – вы можете обнаружить, что такой эффект произошёл.

Дальше ещё один момент. Мы знаем хорошо, что существует такой химический эффект, который носит название миграция связи. Вот здесь на рисунке показано, что двойная связь находится в крайнем левом положении, то есть близко к радикалу R, а дальше идут одиночные связи. Но эта двойная связь может переместиться и принять другое положение. В принципе, она может переместиться и дальше, и происходит как бы перенос сигнала вдоль по определённом цепи, то есть молекулярные цепи могут передать информацию от одного участка молекулы к другому участку молекулы.

Обратите внимание на то, что мы опять начинаем касаться процессов жиз-ни, где мы всё время имеем вопрос передачи информации и восприятия информа-ции.

Этот процесс можно мыслить себе таким образом, как показано на сле-дующем рисунке. Тут изображено то, что в науке носит название потенциальной ямы, она внизу, то есть молекула находится в основном состоянии. Затем проис-ходит какое-то возбуждение, вы попадаете в верхнюю потенциальную яму, и уро-вень энергии этой ямы может резонансным образом взаимодействовать с уровнем энергии другого изомера, другой изомер – это другая яма. И дальше начинается процесс перекачки из одного изомера в другой. Это то, что явно проявляется, ко-гда двойная связь мигрирует вдоль одиночных связей, потому что каждое поло-жение этой двойной связи – это другой структурный изомер.

Оказывается, что если в конце такого процесса мы попадаем в глубокую яму (часто это какая-то реакция), то тогда вернуться к исходному состоянию очень трудно, и тогда весь процесс движения этой двойной связи в данном случае должен происходить всё время в определённом направлении, то есть у вас полу-чается направленная передача сигнала. Обратите внимание, что это направленная передача сигнала существенным образом отличается от того, с которым мы имеем дело в кристаллическом компьютере – там сигналы переносятся с помощью элек-трического тока. То есть с помощью какого-то электрического воздействия. Здесь совершенно другая природа, но результат тот же самый.

Если рассмотреть так называемый фотосинтетический центр, то он устроен так. Там крупные плоские молекулы являются приёмником излучения, вроде па-раболического зеркала, которое может концентрировать это излучение. Когда они принимают излучение, то с ними ничего собственно не происходит, реакция идёт в совершенно другом месте. И нужно передать туда какой-то сигнал, какую-то энергию. По-видимому, это и происходит за счёт такой последовательной изоме-ризации. Другое дело, что это может быть гораздо сложнее, чем здесь изображе-но, но…

А.Г. Но принцип тот же.

Л.Г. Но принцип, по-видимому, тот же. Я думаю так, может быть, другие думают иначе…

А.Г. Недавно у нас была передача, где мы говорили о фотосинтетике, об основных её элементах. Очень похоже, что вы не один так думаете.

Л.Г. Значит, по-видимому, такие вещи всё же наблюдаются. Эта крупная молекулярная система оказывается способной принять сигнал в одном месте, а передать его в совершенно другое место, и там, может быть, произойдёт какая-то нужная реакция или будет записан какой-то сигнал.

Всё это приводит к очень важному рассуждению. Известно, что одна моле-кула может опознавать другую молекулу, это в биологических системах типичная вещь. То есть когда две молекулы сближаются, первый этап здесь тот, что они по-хожи по форме (это то, что носит название «ключик-замочек», принцип Фишера), когда молекула укладывается около другой. На втором этапе происходят отдель-ные химические реакции и получается, что сигнал подан в несколько центров приёмной молекулы.

Теперь зададим себе такой вопрос: что такое распознавание образа? Под распознаванием образа в математике понимается следующая вещь – у вас есть ка-кой-то образ, который в идеале записывается цифрами. Это не всегда так, но близко к этому. Скажем, какой-то спектр можно записать в виде положений ли-ний, их интенсивности и так далее, получить многомерный сигнал. Такой много-мерный образ можно изобразить в виде точки в многомерном пространстве. То есть, у вас много признаков сводится к одному.